
Automated Program Analysis for Cybersecurity

Exploiting recent breakthroughs in program analysis

to enable provably secure software.

Cyber Thrust

Tim Fraser

Industry Day Webcast

3 August 2011

8/5/2011 1Approved for Public Release, Distribution Unlimited

Approved for Public Release, Distribution Unlimited 2

The 40-year quest for machine-proven security

8/5/2011

1970 – ARPA Ware Report – “We have a cybersecurity problem.”
1972 – Anderson Report – “Let’s have provable security!”
1979 – Feiertag/Neumann PSOS paper – “prove the specs match

the requirements, and the code matches the specs!

1983 – DoD TCSEC – “While we’re waiting for the program
analysis tools, maybe we can just do the specs…”

1996 – Forrest “sense of self” paper – “Intrusion Detection does
good without proofs, let’s work on that instead.”

2008 – Dillig scales Saturn to analyze 6MLOC Linux kernel.
2009 – Ciortea’s Cloud9 makes analysis run in cloud = scale.
2009 – Klein claims first formal verification of a ukernel (SeL4).

OVERCONFIDENCE

DISMAL FAILURE

ABANDONMENT

BREAKTHROUGH

Klein et. al., “seL4: Formal Verification of an OS Kernel,” in the 22nd ACM SIGOPS Symposium on Operating System Principles,
2009.

These scalability breakthroughs present an opportunity to build the automated
analysis tools needed to make programs with provable security properties a reality.

Approved for Public Release, Distribution Unlimited 3

How can we exploit seL4 results to cyber-certify
DoD software?

8/5/2011

Anecdotally, analysis tools
need a PhD to operate.

SeL4 proof work took 132
person-months. [Klein 2009]

WHAT WE NEED FOR CYBER:
“No malware.”
• No hidden triggers.
• No eavesdropping.
• No DoS, C&C, exfiltration.
• No backdoors.

SPIN 10’s of LOC [Holzmann 97]
SLAM ~KLOC [Ball 2002]

Sound static analysis tools have
historically had a problem with
false-alarms.
(25-40% false alarms are
typical.) [Xie 2007, Ball 2010]

WHAT SEL4 NEEDED:
“SeL4 can run applications.”
• Scheduler runs ready apps or
the idle task.

• Newly allocated memory
objects don’t overlap.

How do we map our notion of cybersecurity to properties we can prove?

How do we make analyses scale to realistically large programs?

How do we turn this into practical tools?

✔

×

×

BLAST ~10’s of KLOC [Henzinger 2003]
Dillig/Saturn ~MLOC [Dillig 2008]

WELL-CHOSEN PROPERTIES
RULE OUT BROAD CLASSES
OF MALICIOUS
TECHNIQUE.

COMMERCIAL ANTI-
MALWARE APPROACH
RULES OUT ONLY NARROW
IMPLEMENTATIONS.

ENOUGH
FOR
MOBILE
APPS.S

C
A

L
E

T
O

O
L
S

P
R

O
P

E
R

T
IE

S

Approved for Public Release, Distribution Unlimited 4

Background: Undecidability.

8/5/2011

Virtually any interesting question about
program behavior is undecidable.

Undecidability makes a perfect solution
provably impossible.

There are two general approaches to
dodging undecidability:
• Purely static formal methods that
trade false alarms for decidability.

• Hybrid static + dynamic methods
trade missed detections for
decidability.

• These tradeoffs will limit the kinds of
properties we can prove; force us to
define cybersecurity in terms of those
kinds of properties.

• Excessive false alarms and missed
detections will render some approaches
impractical.

“Does this program halt?”
1. The only way a machine can answer

this question with complete accuracy
for any program on any input is to
essentially run the program.

2. If the program halts, the machine
can answer “yes”. (3/2 = 1.5)

3. But, if the program does not halt, the
machine fails to answer.
(1/3 = 0.333…)

Approved for Public Release, Distribution Unlimited 5

Challenge: Tools - Purely static formal methods

8/5/2011

Intuitive example:

1 Convert program into simpler model:

Perform analysis on model.2

Trigger: “only in Afghanistan.”

Approach:
Trade precision for decidability.

Advantage:
Considers all paths in a program.

Historical Disadvantages:
• You may not be able to make a
simple model that still supports your
properties of interest.

• Too many false alarms. Need a
PhD to pick the wheat from the chaff.

• Difficult to scale to large programs.
Why invest now?
• Recent advances in shape analysis

have reduced false alarms.
(example: SPACEINVADER CAV 2008.)

• Dillig scaled SATURN to 6MLOC Linux
kernel (PLDI 2008).

• Microsoft has taken SLAM prototype
and made the Static Driver Verifier, run
by all 3rd-party driver developers.

Approved for Public Release, Distribution Unlimited 6

Challenge: Tools - static+dynamic hybrid

8/5/2011

Intuitive example:

Run the program with
instrumentation:

Observe how inputs
control paths.

Compute new inputs
to reach new paths.

Cover as many
different paths as time
allows.

1

2

3

4

Approach:
Trade incomplete coverage for
decidability.

Advantages:
• If you can instrument the binary, you
can test whatever properties you
want.

• Fewer false alarms; requires less
skilled analysts.

Historical disadvantages:
• Better coverage still isn’t complete
coverage.

• Difficult to scale to large programs.
Why invest now?
• Brumley has demonstrated
techniques to direct analysis towards
paths of interest (NDSS 2011).

• Ciortea has parallelized KLEE to
achieve scale by running in cloud
(SIGOPS 2009).

Trigger: “only in
Afghanistan.”

Key idea: after taking the benign branch, the
analysis program calculates that “Afghanistan”
is the trigger. Analyst doesn’t have to guess.

Approved for Public Release, Distribution Unlimited 7

Challenge: Properties

8/5/2011

We want to apply this to all DoD software.
But we’ll start with mobile apps.
• Immediate need in DoD.
• Opportunity for deployment.

Examples:
Objective: bar eavesdropping malware.
Provable property: This walkie-talkie

app records audio only when the talk
button is pressed.

Objective: bar destructive malware.
Provable property: No document can

cause this viewer’s rendering engine to
spawn a background thread that
performs endless unused computation
to drain a mobile’s battery.

Objective: no downloading malcode.
Provable property: No plugins; no

Turing-complete interpreters.

LOCK/Standard Mail Guard effort (1987-
1992):

Mostly-manual formal methods
uncovered only 68% of the security
flaws found. Why not 100%?

“While formal assurance is clearly
effective at detecting flaws, its
practicality hinges on the degree to
which the formally modeled system
properties represent all of a system’s
essential properties.”

Approved for Public Release, Distribution Unlimited 8

Approach: tools and properties

8/5/2011

Key Challenges:

Dodge undecidability.
Make practical tools that
are capable of certifying
our properties of
interest.

Map cybersecurity to
provable properties.
Generate a list of
properties aimed at
barring malware.

Relevant Program Elements

R&D TEAMS:
• Build the tools.
• Define the properties.

Goal: Demonstrate that tools meet coverage, false alarm,
and missed detection goals during tests.

ADVERSARIAL CHALLENGE TEAMS:
• Abstract techniques from existing publically-available
malware and challenge the new tools and properties.

Goal: Demonstrate that tools fail to meet goals; force
R&D Teams to improve.

AC Teams’ counterexamples
will lead to new properties
throughout program. Their
role is exploratory, not just
end-of-phase IV&V.

Survey malware Challenge Blue teams’ tools

Approved for Public Release, Distribution Unlimited 9

Application: certification for DoD mobile apps

8/5/2011

3rd-party
developer

DoD
analyst

DoD app
store

DoD
handheld

Example scenarios:
• Bad developer deliberately makes a Trojan
app, or includes hooks to upload malicious
content after deployment.

• Good developer unwittingly incorporates a
Trojan library authored by an adversary.

• Adversary compromises good developer’s
network and injects malware into an app.

DARPA’s ongoing Transformative Apps program aims to reduce barriers to application
deployment, but needs a scalable and effective means of certifying apps.

This proposed program will apply automated analysis to keeping malware out of DoD
mobile app stores. This program: mobile apps. Future programs: all DoD software.

Insufficient economic incentive for
commercial industry to invest here.
Example: DroidDream

Approved for Public Release, Distribution Unlimited 10

Metrics and goals

8/5/2011

METRIC:

FALSE ALARMS:
How often do the tools waste analyst
time by reporting malcode that isn’t
there?

MISSED DETECTIONS:
How often does the Properties Team
sneak malcode past the tools?

MANUAL EFFORT:
How many hours of manual effort does it
take to certify an application?
(Machine hours don’t count.)

FINAL
GOAL:

5%

5%

MIDTERM
GOAL:

30%

30%

WHERE ARE WE
NOW?

Analysts choose
tools that don’t
produce False
Alarms even
though…

… these tools
can find only
trivial malcode.

11 person-year
SeL4 effort.

Manual formal verification
caught 70% of security
flaws found in LOCK after
a 3.2 person-year effort.
[Smith 2001]

Microsoft made this
improvement with SLAM
v1 -> v2 over the course
of 10 years. [Ball 2010]

Microsoft made this
improvement with SLAM
v1 -> v2 over the course
of 8 years. [Ball 2010]

AFNIC reports not enough resources to apply tools
requiring high expertise and time. [AFNIC 2011]

Person-weeks for
mobile apps, not
person-years.

Approved for Public Release, Distribution Unlimited 11

Program structure

8/5/2011

BAA, src
selection

18 month base 18 month option
6 m.

option

FY11 FY2012 FY2013 FY2014 FY15
 Jan 2012? Midterm exam Final exam

Make
deploy-

able tools.

IV&V

Proof of Concept demonstrations.
Refinement and extension of

promising approaches.
R&D

ADVERSARIES Challenge tools. Challenge tools.
Survey

Malware

