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Scientific Objectives

Fundamentally new game theoretic concepts & approaches 

Based on models of real-world adversaries and their strategies:
Social-cultural/cognitively-biased, act in space & time, in coalitions, with uncertainty

Scientific barriers and opportunities:
Quantitative behavior modeling in massive scale-games

Previous work: single “rational” (strict payoff-maximizing) agents
Opportunity: Leverage new behavioral models, OR approaches for games

Games with geographically-dispersed actions, actions in networks

Previous work: Limited work on spatiotemporal actions, massive networks 
Opportunity: Leverage new spatiotemporal adversarial models (gangs, criminals)

Coalitions and uncertainty

Previous work: coalitions, uncertainty, adversarial settings studied separately
Opportunity: Unified approach leveraging algorithmic advances on each frontier 



Technical Approaches: Overview

Scalable behavioral game theory

New quantitative models of boundedly rational players
Algorithms for massive scale games with models of bounded rationality

Spatiotemporal game theory 

Model acting in geographical space & time, on networks
Model games over populations
Solution approaches for equilibrium computation

Stochastic coalitional game theory (not covered today)

Algorithms for player (mis)coordination, coalitions
Algorithms to address imperfect observation, execution, payoff noise 



Scientific Accomplishments to Date: 
What have we learned

Background: Stackelberg (leader follower) games and networks

Scalable algorithms for Stackelberg games on networks

Rational follower
Boundedly rational follower

Spatio-temporal game theory

Populations
Geographical space and time

All of these research topics closely interact with each other



Stackelberg Games on Networks 

 Stackelberg games
 Leader: Commits to a mixed strategy
 Follower: Chooses a strategy after observing leader’s mixed strategy
 Strong Stackelberg Equilibrium
 Leader commits to the optimal strategy assuming follower will:
 Choose best response
 Break ties in the leader’s favor
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 Stackelberg games
 Leader: Commits to a mixed strategy
 Follower: Chooses a strategy after observing leader’s mixed strategy
 Strong Stackelberg Equilibrium
 Leader commits to the optimal strategy assuming follower will:
 Choose best response
 Break ties in the leader’s favor

 Major subclass:
 Defender-Attacker games on 

networks 
 Strategies: Subgraphs
 Network: Dynamic & 

stochastic
 E.g., transportation, 

social networks Games on networks: illustrative example



Scale-up in Stackelberg Games on Networks: 
Rational Followers 

 Challenges: Real-world sized networks
 Number of pure strategies exponential in size of network
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Master Problem: LP with few
pure strategies 

Slave Problem: Generates new 
pure strategy 

 Challenges: Real-world sized networks
 Number of pure strategies exponential in size of network

 Approach 1: Column Generation
 Theorem: There exist solutions whose support (# 

pure strategies with positive probability) is at most 
T+1, given T # of targets (e.g., nodes in network).
 Rational & boundedly rational followers



Scale-up in Stackelberg Games on Networks: 
Rational Followers 

 LP using marginals

Master Problem: LP with few
pure strategies 

Slave Problem: Generates new 
pure strategy 
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 Challenges: Real-world sized networks
 Number of pure strategies exponential in size of network

 Approach 1: Column Generation
 Theorem: There exist solutions whose support (# 

pure strategies with positive probability) is at most 
T+1, given T # of targets (e.g., nodes in network).
 Rational & boundedly rational followers

 Approach 2: Marginals for mixed strategies 
 Size polynomial in # nodes & edges in the network 
 When can we use marginals?

 Express expected utilities
Theorem: If utilities of game are separable, 
marginals are sufficient to express expected 
utilities

 Sample from marginals (next slide)
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Does it suffice to
solve for marginal
probabilities only…

… or not, i.e., we need to explicitly solve for
probabilities of full assignments?
(combinatorial explosion in formulation!)

.3 .6 .1

Stackelberg Games on Networks: Complexity Results

Proof techniques: linear programming, Birkhoff-von Neumann theorem [1946] & its
generalizations (e.g., [Budish et al. AER 2013]), NP-hardness reductions, …



Scale-up of Stackelberg games:
Boundedly Rational Followers

Human 
subject tests



Scale-up of Stackelberg games:
Boundedly Rational Followers

 Challenges: Algorithms given behavioral models
 Non-convex optimization given QR model of adversary

 Quantal Response (QR)
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 Approach 1: Binary search + linear approximation
 Theorem: Let    be defender strategy computed,    global 

optimal defender expected utility
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 Approach 1: Binary search + linear approximation
 Theorem: Let    be defender strategy computed,    global 

optimal defender expected utility
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1
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 Approach 2: Cutting-plane
 Separation Oracle:

Lemma 1: The hyper-plane generated by the separation 
oracle is a deep cut touching the feasible convex hull 

 Heuristic: Use gradient of the objective function

Lemma 2: A marginal   is feasible iff the minimum of 
the corresponding Weighted-Separation Oracle LP is 
zero

 Separation Oracle LP
min
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Understanding Human Play in 
Adversarial Games

 Challenges: Understand how players coordinate on 
seemingly sub-optimal strategies, e.g., costly 
punishment

 Game Strategies



ܵ ൐ ܴ

case b)

Understanding Human Play in 
Adversarial Games

 Challenges: Understand how players coordinate on 
seemingly sub-optimal strategies, e.g., costly 
punishment

 Approach: Evolutionary strategy adjustment based 
on best-response function, parameters ܵ and ܴ
 Theorem: Under best-response dynamics, there are two 

possible long-term behaviors
a) coordination on the non-cooperative state ݎ ൌ 0, ݏ ൌ 1
b) coordination on a cooperative state with ݎ ≳ ܵ ൐ ܴ

 Game Strategies

 Best Response Function

ܴ ൐ ܵ

case a)



case b)

case a)

ܵ ൐ ܴ, no ܫ

Understanding Human Play in 
Adversarial Games

 Challenges: Understand how players coordinate on 
seemingly sub-optimal strategies, e.g., costly 
punishment

 Approach: Evolutionary strategy adjustment based 
on best-response function, parameters ܵ and ܴ

 Game Strategies

 Best Response Function

ܴ ൐ ܵ

case a)

 Corollary: If strategy ܫ is removed, only case a) is 
possible



Cops on the Dots:
Instantaneous Optimal Defender Strategy

 Challenges: Understand optimal placement of 
police in residential burglary model.

Thm: For all choices of 
parameters and deterrence 
functions there exists a K* 
such that the system with 
uniform crime rates is 
linearly stable for all 
K>K*.

 APPROACH: well-known burglary model from 
UCLA group – add policing as a deterrence 
function.

 Despite the rigorous theory for 
linear stability, numerics show a 
complicated bifurcation structure 
of solutions for lower levels of K 
<K* - often the case in real 
world problems with limited 
police resources.

L



Contagion Theory for Evacuation

 Challenges: Predict compression wave in 
evacuation scenario.

 “Trampling” rate of agents

Bracket denotes jump across the 
shock.  We measure both the jump in 
the density and the jump in the fear 
level specified at time zero.

 APPROACH: 1D particle model based on 
ASCRIBE model used by USC group Tsai et al.  
Develop rigorous theory in continuum limit.

 Theory related to pressureless
gas dynamics and sticky 
particles.  New theory for 
nonlocal effects from the 
ASCRIBE model.

ESCAPES(early work) Compression wave

THEOREM:  (shock formation, speed prediction)
Given an initial configuration moving to the right 
with particles of average density L for x<0 and 
particles of average density R for x>0 and 
respective fear levels qL>qR, the solution to the 
problem at later times is a singular shock with 
speed:



Potential Breakthroughs

First Stackelberg solution method to scale to million node networks

First results on complexity for Stackelberg games on networks

Algorithms for robustness to adversary without behavioral data

First Algorithmic Experimental game theory results:

Incorporate Quantitative Behavioral Models into Stackelberg Games
New Spatiotemporal Game-Theoretic Models: 

Combining predictive crime models with game theoretic approaches
First Macroscopic multidimensional models for  Contagion Prediction

Quantitative Metrics to evaluate Deterrence values of alternate strategies

First game theoretic model to study recidivism of criminal offenders and 
optimize resources for punishment vs. rehabilitation.

First experimental results on evolution of crime in adversarial game



Why is this an important area

Global, National, Hybrid and Local Security Threats in Defense, 
Economics, Crime and Cyber environments are growing:

Larger in scale (more entities over wider areas)
Faster in action (time to organize malicious actions is shorter)
Computationally sophisticated (in observation and coordination)

The resources we have to address these issues are bounded and also 
growing harder to manage manually.

We need to develop computational theories, models and methods that can 
help support and improve our security infrastructure in all domains.

To do this effectively, we need to extend the science of game theory and 
in particular Stackelberg games to support to address the scale, 
stochasticity and sophistication of the adversaries we will be facing in the 
21st century.



Transitions: Game Theory for Security (2013)

TRUSTS: currently evaluated by TSA and 
Los Angeles Sheriff’s Department

PROTECT: In use by the US Coast Guard 
(Towards national deployment)

Full Scale Exercise: 23 Teams patrolling the Los 
Angeles Metro System for 12 Hours

 Challenges: Coordination of the different teams; 
Robustness of the schedules

Fare Evasion Trials: Daily tests on 
the LA metro system 

 Challenges: Robustness against uncertainty; Game 
Theory vs Uniform Random

PROTECT: patrolling the ports of Boston and New 
York

 Challenges: Spatial and Temporal Constraints; 
Coordination between boats and helicopters

PROTECT – Staten Island  ferry: 60,000 passengers 
a day

 Challenges: Continuous dimensions; Scalability



Budget

Period Fiscal Yr. Duration Amount
Base 2011 4 months $520,833

2012 12 months $1,250,000
2013 12 months $1,250,000
2014 8 months $729,167

Total 36 months $3,750,000
Option 2014 4 months $520,833

2015 12 months $1,250,000
2016 8 months $729,167

Total 24 months $2,500,000



Dates, locations, overall results of major 
reviews or meetings

Kickoff Meeting (Sept 2011, Los Angeles)

− Key guidance: Good start. Foster collaboration across universities
− Response: 

−Regular meetings in LA area, phone calls, joint papers

Year 2 Meeting (Sept 2012, Los Angeles)

− Key guidance: Good progress. Foster collaboration and basic 
research; non-collaborating Co-PI should not be part of MURI.

− Response: 
−One specific Co-PI no longer part of MURI; 
−New collaborations with joint USC-UCLA papers 

Year 3 Meeting (Nov 2013, Los Angeles)



Thank you

Milind Tambe
tambe@usc.edu



Territorial Developments based on graffiti: a statistical      
mechanics approach

Challenges: To construct a lattice model for two 
adversarial gangs interacting only via graffiti fields

Our 2D lattice Hamiltonian –  gangs, g graffiti: 

Theorem: A phase transition exists between disordered
“well mixed” gangs and ordered, “clustered” ones. The
separatrix is at Jcr. The transition between phases is first
order for cr and continuous otherwise. Jcr andcr are

Upper rows: low 
long term graffiti clustering

Lower rows: high 
short term graffiti no clustering

Mean Field Equations:

Couplings: red and blue gang/graffiti (offisite J; onsite K) ,
graffiti decay , gang proliferation 

Each site red, 0 none, 1 blue ) gang
g > 0 blue, g < 0 red graffiti 

b = fraction occupied, n = excess red/blue G = graffiti 
imbalance

 cr  2 ln2

J 2  
e  2

 J 2
cr


